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SUMMARY

An easy-to-use front capturing method is devised by directly solving the transport equation for a volume
of �uid (VOF) function. The key to this method is a semi-Lagrangian conservative scheme, namely
CIP CSL3, recently proposed by the author. In the CIP CSL3 scheme, the �rst-order derivative of the
interpolation polynomial at each cell centre is used to control the shape of the reconstructed pro�le.
We show in the present paper that the �rst-order derivative, which plays a crucial role in reconstructing
the interpolation pro�le, can also be used to eliminate numerical di�usion. The resulting algorithm can
be directly used to compute the VOF-like function and retain the compact thickness of the moving
interface in multi-�uid simulations. No surface reconstruction based on the value of VOF function
is required in the method, which makes it quite economical and easy to use. The presented method
has been tested with various interfacial �ows including pure rotation, vortex shearing, multi-vortex
deformation and the moving boundaries in real �uid as well. The method gives promising results to all
computed problems. Copyright ? 2003 John Wiley & Sons, Ltd.

KEY WORDS: Multi-�uid �ow; numerical method; transport scheme; moving boundary; interface
tracking

1. INTRODUCTION

Numerical simulations for multi-�uid �ows often require explicit computations for the free
interfaces which separate di�erent �uid components. The earliest work in describing and
tracking a free surface can be traced back to the MAC (Marker and cell) method [1]. In the
MAC method, Lagrangian particles were tracked and predicted according to the �uid velocity
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�eld. The position of the interface is located in the cells that contain particles of both �uids.
Without re-positioning the particles, the spatial distribution of the particles tends to become
highly irregular with some cells over-�lled while some others are under-�lled in regions where
the spatial domain is heavily deformed. Adding extra particles or re-distributing the existing
particles might improve the numerical solutions, but a large increase in computational cost
prevents the method from being practical, particularly in simulations involving large distorted
con�gurations.
Successive studies for the numerical representation of a moving interface led to another

volume tracking concept for incompressible �uid �ows, the volume of �uid (VOF) [2, 3].
A VOF method records and predicts the fraction of a ‘�uid’, which is an indicator of the
volume ratio for a speci�ed �uid component and is sometimes called the VOF function. The
interface is reconstructed by using line segments (2D) or polygons (3D) which cut through
the cells that have a fractional value of the VOF function. There is freedom in choosing the
reconstruction technique for the interface, for example, the SLIC (using line segments aligned
to grid lines) or the PLIC (using linear approximations [4–8]).
Using a VOF function to identify di�erent �uids appears to be a natural representation

of an interface on a �xed grid. Another attractive property of VOF is that it is quite easy
to conserve the ‘mass’ (or equivalently the volume in incompressible �uid) of the fraction
function. A conventional VOF method requires an interface reconstruction which is based only
on the fraction of �uid in each cell. The reconstruction procedure involves extra arithmetic
operations and ‘if’ logics, and consequently is more computationally intricate, especially in
3D applications.
Another method that shares great popularity for computing a moving free boundary is

the level set scheme [9, 10]. A level set function, which is actually de�ned as the signed
distance for any point according to how far away it is located in respect to the interface,
gives a well-regulated �eld for computing the geometric quantities such as the normal vector
and the curvature of an interface. However, because there is no rigorous restriction for mass
conservation during the process for re-initializing the distance function, the conservation of
mass is not guaranteed. So, in many applications where conserving the mass of a �uid appears
to be essential, the VOF method is still preferred.
In fact, none of the existing schemes are perfect in all the numerical aspects, like geo-

metric faithfulness and mass conservation. Moreover, both the VOF and the level set require
some extra steps to rearrange the �eld variable after the advection computation. An inter-
face reconstruction is conducted in a VOF method which is based on the SLIC or PLIC
approach. Many numerical simulations show that a SLIC reconstruction is usually not ade-
quate in capturing complex interfaces in real applications. A PLIC reconstruction produces a
much better numerical result than the SLIC reconstructions, but needs more complex com-
putational e�orts, especially in three dimensions. Under the level set method, on the other
hand, the re-initialization procedure is required to make the distance function well de�ned.
Thus, there might be a desire for interface capturing schemes which work without the extra
treatments besides advection. The aim of this paper is to devise a way which does not require
the reconstruction procedure in a VOF-type methodology.
Recalling that for a given velocity �eld U any VOF method is designed to solve

@f
@t
+∇ · (Uf)− f∇ ·U=0 (1)
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for a function f valued between 0 and 1. One can be motivated to directly solve the advection
equation (1) for a VOF function, which usually shows up as a density function or a colour
function in applications, by using a sophisticated advection scheme. If the advection scheme
is well-designed, we can expect that the computed solution can be used as the VOF function
and needs no interface reconstruction. However, as commented by Rider and Kothe [12],
any advanced Eulerian advection scheme has intrinsic numerical di�usion and tends to smear
the free interface. Therefore, it is di�cult to retain the compact thickness and the geometric
faithfulness of the interface by only using an advanced advection equation. Remedies to the
numerical di�usions of advection schemes have been devised [13, 14] and applied to multi-
�uid simulations [15]. Nevertheless, direct computation of the VOF function with only an
advection scheme does not seem to have been widely accepted yet as a practical tracking
method for moving boundaries.
This work presents an economic numeric method to compute moving boundaries. The

scheme is based on our newly developed transport method namely CIP-CSL3 [16]. The scheme
is exactly mass-conservative no matter how the slope limiter is determined. We will show
that with an easy anti-di�usion modi�cation in the original scheme, the thickness of the tran-
sition layer can be kept compact. Section 2 brie�y describes the advection scheme and its
multi-dimensional implementation. The anti-di�usion modi�cation that is e�ective in avoiding
the smearing of the VOF function is discussed in Section 3. Various numerical tests which
show the e�ectiveness of the resulting scheme are reported in Section 4, and the paper ends
with a short summary in Section 5.

2. THE ADVECTION SCHEME

Yabe et al. [17] and Xiao and Yabe [16] have recently suggested a new class of schemes, so
called Constrained Interpolation Pro�le Conservative Semi-Lagrangian (CIP CSL) schemes, by
using a semi-Lagrangian updating to compute the cell-interface values. Unlike other conven-
tional schemes such as MUSCL [18, 19] and PPM [20], the CIP CSL schemes are constructed
on a pro�le with a global smoothness of at least C0 and cause much less dispersion error.
In Reference [16], the numerical oscillations were eliminated by introducing a slope limiter
at the centre of each mesh cell. The slope, as a parameter in reconstructing the interpolation
pro�le, in fact provides us with large freedom to control the interpolation pro�le and thus
modulate the numerical solutions. Next, we describe the CIP-CSL3 scheme.
The CIP-CSL3 method is originally designed to solve the transport equation

@f
@t
+
@
@x
(uf)=0 (2)

where t refers to the time, x the spatial co-ordinate, u the characteristic speed and f the
transported quantity. It can be directly applied to the advection equation of the VOF function

@f
@t
+
@
@x
(uf)− f @u

@x
=0 (3)

by simply adding a divergence term.
From the given data f(x1); f(x2); : : : ; f(xi); : : : ; f(xN ) with x1¡x2¡ · · ·¡xi¡ · · ·¡xN ,

which denote the numerical solution of Equation (3) {fni } over the computational domain
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at the nth time step (t= tn), we make use of a piece-wise cubic polynomial function, like
that in the original CIP method [21].
The ith piece of the interpolation function is constructed over upwind stencils. Taking the

case of u¿0, a left-bias interpolation can be written as

FLi (x) =f(xi) + c
L
1i(x − xi) + cL2i(x − xi)2

+ cL3i(x − xi)3; for x∈ [xi−1; xi] (4)

From the continuity conditions of FLi (x) at the two ends of the cell, we have

FLi (xi)=f
n(xi) (5)

and

FLi (xi−1)=f
n(xi−1) (6)

A constraint for the conservation of cell-integrated average is imposed as

1
�xi−1=2

∫ xi

xi−1

FLi (x) dx= �f
n
i−1=2 (7)

where �xi−1=2 = xi − xi−1.
Another constrained condition for the interpolation construction is imposed on the �rst-order

derivative of FLi (x), at the middle point of the cell

d FLi (x)
dx

=dni−1=2 (8)

The slope of the interpolation function at the cell centre dni−1=2 remains as a free parameter
to be determined. It is this parameter that provides us a way to modify the interpolation
function for reducing numerical di�usion and suppressing numerical oscillation. Some prac-
tical candidates for computing dni−1=2 were given in Reference [16]. The modi�cations to
dni−1=2 which e�ectively diminish the numerical di�usions will be discussed in the following
section.
In terms of fni ; f

n
i−1; d

n
i−1=2 and �f

n
i−1=2, the polynomial (4) can be completely determined

from (5–8), and the coe�cients read

cL1i =− 6
�xi−1=2

�f
n
i−1=2 +

6
�xi−1=2

fni − 2dni−1=2

cL2i =− 6
�x2i−1=2

�f
n
i−1=2 +

3
�x2i−1=2

(3fni − fni−1)−
6

�xi−1=2
dni−1=2 (9)

cL3i =
4

�x3i−1=2
(fni − fni−1)−

4
�x2i−1=2

dni−1=2

Analogously, the right-bias FRi interpolation function can also be derived. Once the inter-
polation function is determined, the numerical solution of f at time step n+1 is updated by
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a semi-Lagrangian solution as

fn+1i =

{
FLi (xi − u�t); if u¿0

FRi (xi − u�t); if u¡0
(10)

The cell-integrated average �f is advanced by a �ux form from the conservative relation

�f
n+1
i−1=2 = �f

n
i−1=2 − (gi − gi−1)=�xi−1=2 + �f

n
i−1=2(ui+1=2 − ui−1=2)=�xi (11)

where gi represents the �ux across boundary x= xi during tn+1 − tn and is computed as

gi =
∫ tn+1

tn
[min(0; u)FRi (xi − u(t − tn)) + max(0; u)FLi (xi − u(t − tn))] dt (12)

The CIP-CSL3 scheme is substantially di�erent from the PPM scheme at the following
aspects: (1) the cell-interface value in the CIP-CSL3 scheme is treated as a dependent variable
and predicted via a semi-Lagrangian step, whereas the cell-interface value in the PPM is
determined by an interpolation based on the cell-integrated average value; (2) to eliminate
the numerical oscillations, both the slope limiter and the modi�cation to the cell-interface
value are required in PPM. Thus, the cell-interface values are not necessarily continuous at
the cell boundaries. In CIP-CSL3, however, an oscillation-less solution can be easily obtained
by just modifying the slope at the cell center. The cell-interface values are always continuous.
(3) A cubic polynomial is used in the CIP-CSL3 method, whereas the PPM uses a parabolic
function. (4) Our numerical experiments show that a CIP-CSL type scheme gives better results
in terms of numerical dispersion [11].
The arithmetic operation count of CIP-CSL3 is almost the same as that of PPM. To evaluate

the computational e�ciency, we have timed the elapsed CPU seconds of CIP-CSL3 and
PPM with a 1D advection of a rectangular wave on a 400-cell mesh for 10 000 steps of
time integration on a Windows PC with a PentiumIII/850 MHz. The FORTRAN compiler is
Compaq/DIGITAL Visual FORTRAN version 6.1. The CPU elapsed time of PPM is 2:95 s
and that of the CIP-CSL3 is 3:10 s.
In multi-dimensional implementation, a splitting that is based on the 1D solver is used. The

staggered cell edge values that are not aligned along the splitting direction need to be updated
according to the provisional time variation of the cell-integrated averages �f. We update the
interface values by using a cubic spline function.
Taking the time variation of the cubic spline in terms of f and �f, for example in the x

direction, we arrive at

1
�xi−1=2

�tfi−1 + 2
(

1
�xi−1=2

+
1

�xi+1=2

)
�tfi +

1
�xi+1=2

�tfi+1

=3
(

1
�xi−1=2

�t �fi−1=2 +
1

�xi+1=2
�t �fi+1=2

)
(13)

Equation (13) can be easily solved by a direct elimination method. Another completely
explicit formulation can be obtained by using a simple averaging to the values at the two
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ends of the tri-diagonal band in (13) as

�tfi−1 =
(

1
�xi−3=2

+
1

�xi−1=2

)−1( 1
�xi−3=2

�t �fi−3=2 +
1

�xi−1=2
�t �fi−1=2

)
and (14)

�tfi+1 =
(

1
�xi+1=2

+
1

�xi+3=2

)−1( 1
�xi+1=2

�t �fi+1=2 +
1

�xi+3=2
�t �fi+3=2

)
(15)

The interface value fi can be updated immediately after the time variation tendency �tfi is
computed.

3. INTERFACE CAPTURING: ANTI-DIFFUSION MODIFICATION

Tracking or capturing free boundaries plays a key role in simulating multi-�uid �ows, and
thus has been an active research �eld for more than a few decades. As mentioned in the
introduction, the interface reconstruction of the VOF in three dimensions is not an easy job,
while the re-initialization in the level set appears computational expensive. An alternative way
that does not involve a reconstruction procedure is desirable.
A noteworthy work on direct computation of VOF function is due to Rudman [22], where

the FCT (�ux-corrected transport) concept is used to eliminate numerical di�usion and the
initial sharpness of the VOF function can be enforced.
Since CSL3 provides a formulation that allows modifying the interpolation pro�le through

the slope dni−1=2 but without violation of mass conservation, we can easily design an algorithm
that maintains sharp transition jumps.
There are many ways to determine the �rst-order derivative at the cell center dni−1=2 in

CSL3 method. For capturing a VOF function (or a Heaviside function), the desired numerical
solution should have at least the following two features: (1) small numerical oscillation; and
(2) small numerical smearing. A trade-o� between the oscillation reduction and the sharpness
enforcement can be easily achieved in the CIP-CSL3 scheme by modifying the slope dni−1=2.
The numerical oscillation can be e�ectively suppressed if we approximate dni−1=2 by using

the following formulation [19]

d̂i−1=2 =minmod(d̃i−1=2; 2Si; 2Si−1) (16)

with Si=(fni+1=2 − fni−1=2)=�xi. We simply use the central di�erencing to approximate d̃i−1=2
in the present paper.
As given in Reference [16], the ‘point-value’ of the interpolation function at cell centre can

be computed as

fni−1=2 =
3
2
�f
n
i−1=2 −

1
4
(fni + f

n
i−1) (17)

As long as d̂i−1=2 is computed, a modi�cation can be made by �nally determining dni−1=2
with a function in form as �(�; d̂i−1=2). One of the simplest forms is

dni−1=2 =�d̂i−1=2 (18)
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The parameter � functions as a modi�cation to the slope. It is obvious that any � larger than
one will enforce the local sharpness of each piece-wise constructed pro�le. When applied to
a VOF function valued between 0 and 1, the following are some candidates for computing �,

(i) �=(1 + �|fni − fni−1|=�i−1=2) (19)

(ii) �= �(1− | �fni−1=2 − 0:5|) (20)

(iii) �= �1e
−�2| �fni−1=2−0:5| (21)

Our numerical tests show that both (20) and (21) e�ectively enforce the sharpness of the
jump in any Heaviside function in a highly deforming velocity �eld and are able to build a
narrow, sharp transition zone around the surface that is identi�ed with the 0.5 value of the
VOF function. The numerical experiments suggested that a value of � between 2.0 and 2.5 in
(20), and the values of 2.0 and 1.0 for �1 and �2 in (21) give a proper trade-o� between re-
ducing numerical di�usion and avoiding numerical oscillation. Expression (20) appears more
computationally e�cient in real applications. We hereafter refer to the CSL3 scheme with
these anti-di�usion modi�cations as C3 VOF, a shortening of Constrained interpolated pro-
�le Conservative semi-Lagrangian scheme with Cubic polynomial for VOF.
Since no surface construction is required in C3 VOF method, it can be more easily im-

plemented in multi-dimensional computation. As discussed in the last section, the C3 VOF
with slope modi�cation (20) requires almost the same computational e�orts as that of PPM.
Comparisons with other popular interface capturing schemes can be made by checking [12]
where a good reference of di�erent schemes is given with respect to both the solution quality
and computational expense.
The multi-dimensional version of the C3 VOF scheme is constructed through a splitting

of the 1D scheme. The multi-dimensional implementation discussed in the last section can
be used. The advection equation of the VOF function (1) and (3) includes a divergence-
correction to the dimensional splitting based on the 1D scheme, which proves to be necessary
in case of deformational velocity �eld for multi-dimensional applications.

4. NUMERICAL TESTS

We �rst tested the 1D C3 VOF scheme. A 1D Heaviside function is computed with a � de�ned
by (19). Shown in Figure 1, the thickness of the transition region was kept constant even up
to 10 000 steps. With a larger � value, the initial sharpness is better preserved. Furthermore,
by a properly chosen �, a transition zone with a desired width, not just a jump of one mesh
size, can be constantly reproduced. As a measure of numerical di�usion, we plotted the L2
errors for di�erent values of � in Figure 2. Compared to the calculation without anti-di�usion
modi�cation (�=0), the numerical di�usion has been e�ectively suppressed in the cases of
�=0:2 and �=1. The slopes of the transition jumps remain constant even after a long term
computation. Compared to other anti-di�usion or arti�cial compression techniques, C3 VOF
provides a more �exible formulation to control the thickness of the transition layer across a
moving interface.
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Figure 1. Computed results after 1000 steps (left) and 10 000 steps (right)
with �=1 (top) and �=0:2 (bottom).

As a two-dimensional example, the Zalesak’s cut-cylinder problem was computed. Figure 3
shows the results after one revolution. For comparison, we include the numerical result of
PPM as well. It is clear that the slope modi�cation in C3 VOF works e�ectively in reducing
numerical di�usion and does not cause remarkable geometric distortion. The thickness of the
transition layer being less than 4 grid cells is retained. The PPM method, however, is not
able to get rid of the numerical di�usion across the interface jump, thus producing a more
smeared and wider transition layer. Figure 4 displays the numerical interface computed by
C3 VOF, which is identi�ed as the 0.5 contour of the numerical solution, against the exact
solution. The numerical solution appears to be accurate and geometrically faithful. We also
repeated the rotating solid problem used by Rudman [22]. Shown in Figure 5, C3 VOF gives
competitive results to those tested in Rudman [22]. The L1 error (de�ned by (9) in Reference
[22]) of C3 VOF for this test is 2:57× 10−2, which manifests an accuracy higher than the
FCT-VOF method proposed in Reference [22] but lower than the PLIC.
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Figure 2. L2 errors with di�erent anti-di�usion parameter �. The calculation steps are up to 10 000.

We evaluated the convergence rate of C3 VOF by computing a rotating solid cylinder [12]
on three gradually re�ned meshes which divide a unity square domain into 32× 32; 64× 64
and 128× 128 grid points, respectively. The computed interfaces are plotted in Figure 6
against the exact solution. It is observed that the numerical interface has been adequately
reproduced even on the 32× 32 mesh. The L1 errors and the mesh-re�nement convergence
rates are given in Table I. An overall �rst order convergence rate is obtained. Compared with
the data given in Table II of [12], C3 VOF has an accuracy among the practical methods for
interface tracking.
As suggested by Rider and Kothe [12, 7], a practical interface capturing method should

be tested and veri�ed with not only the translational and rotational velocity �eld but also
with the highly deforming �uid �ow. We tested C3 VOF using the velocity �elds designed
in References [12] and [7].
A complex �ow �eld which leads to stretching and spiraling of the initial shape as used

by Rider and Kothe [12, 7] and many others as de�ned with a stream function

�= − 1
�
sin2(�x) sin2(�y) cos(�t=T ) (22)

We conducted the calculations with � de�ned by (20). The computational domain is a
unit square, and meshes of di�erent resolutions as 32× 32; 64× 64 and 128× 128 are used.
As expected from (22), a reverse velocity �eld will be generated as t¿T=2, and the ideal
solution at t=T will be identical to the initial con�guration. Figures 7–9 show the results at
di�erent instants and the comparisons with the exact solution on various grid resolutions. The
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Figure 3. Zalesak’s test after one revolution of rotation computed by C3 VOF (top) and PPM (bottom)
respectively. Plotted are the contours of 0.05, 0.5 and 0.95.

initial circle has been distorted into a spiral with a stretched thin tail. The numerical solution
on the low spatial resolution (on 32× 32 mesh) failed in reproducing the detail structures
near the stretched tail and the interface su�ered numerical smearing, but the overall inter-
face has been reasonably captured when the pro�le reversed to its initial position. Compared
with the schemes proposed by Rider and Kothe [7] and Harvie and Fletcher [8], the present
method reproduced the head of the spiral as well, but did not cause the discrete ‘globs’
(see the result at t=3 in Figures 7 and 14(e) in Reference [7] or Figure 12(c) in Refer-
ence [8]) which appear to be commonly associated with the surface construction procedure
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Figure 4. Zalesak’s test after one circle of rotation. Displayed are the exact solution (solid line) and
the numerical solution computed by C3 VOF (dashed line).
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Figure 5. Another Zalesak’s test used in Rudman [22]. Plotted are the contours of 0.05, 0.5 and 0.95.

as used in References [7] and [8]. Similar to those in References [7] and [8], the �nal solu-
tion on a 32× 32 mesh (Figure 7 with t=6), was not able to accurately simulate the exact
solution, nevertheless, the numerical results of the present scheme still look visually accept-
able. As shown in Figures 8 and 9, heightening the spatial resolution signi�cantly improved
the solution. The simulation of 128× 128 computation gives satisfactory results for both the
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Figure 6. Solid body rotation of a circle on a 32× 32 mesh (top), a 64× 64 mesh (middle) and a
128× 128 mesh (bottom). Displayed are the computed interfaces of the transport bodies (dashed line)

and the exact solution (solid-line).

Table I. L1 errors and convergence rates of C3 VOF on the solid rotation problem.

32× 32 Order 64× 64 Order 128× 128
7:42× 10−3 0.924 3:91× 10−3 1.07 1:86× 10−3

largely distorted con�guration (t=3) and the �nal solution (t=6). The grid re�nement con-
vergence rate for this test problem is given in Table II. The convergence rates are higher than
�rst-order.
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Figure 7. Single-vortex shearing �ow test on a 32× 32 mesh with T =6. The velocity �eld reverses at
t=T=2, and restores the con�guration back to its initial state at t=T . Displayed are the contours of
0.05, 0.5 and 0.95 of the numerical results at t=3 (top) and at t=6 (middle). The bottom panel shows
the di�erence between the numerical result (dashed line) and the exact solution (solid-line circle).

Another more stringent test is to capture an interface transported by a velocity �eld de�ned
by

�=
1
4�
sin

(
4�

(
x +

1
2

))
cos

(
4�

(
x +

1
2

))
cos(�t=T ) (23)

This problem was initially used by Smolarkiewicz [23] to test general advection schemes
and suggested by Rider and Kothe [12] for interface tracking methods. As can be seen in
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Figure 8. Same as Figure 7, but on a 64× 64 mesh.

Table II. L1 errors and convergence rates of C3 VOF on the single vortex problem.

32× 32 Order 64× 64 Order 128× 128
3:22× 10−2 1.35 1:26× 10−2 1.21 5:42× 10−3

Figure 3 of [12], the initial sphere was largely deformed into several segments which appear
topologically diverse, such as spiral, thin �lm and thin bridge. The thin segments usually
appear not to be resolvable for most interface tracking methods.
A 2D cylinder as de�ned in the above example was transported with the velocity �eld

(23). The time required to move the distribution back to its initial state is T =2. A periodic
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Figure 9. Same as Figure 7, but on a 128× 128 mesh.

lateral boundary condition is imposed in this computation. Figures 10–12 shows the results
at di�erent instants of C3 VOF on 32× 32; 64× 64 and 128× 128 meshes, respectively. The
farthest �lament that is entrapped by the two topmost vortexes could not be well resolved
on 32× 32 and 64× 64 resolutions, while the computation on 128× 128 mesh produced a
competitive solution with respect to the results of other interface schemes given in Figure 5
of [12]. The bottom panel in Figure 12 plots the �nal distribution against the exact solution.
The main part of the body has been satisfactorily restored, the entrapped thin �lament has
been transported back to around its original location and merged with the main part. On the
coarse computational grid, it seems to be di�cult to restore the highly stretched segment that
is too thin to be resolved by the �nite spatial resolution. When un-resolvable thin structures
develop, we will lose the information regarding the initial structure. Therefore, we cannot
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Figure 10. Multi-vortex deformational �ow test on a 32× 32 mesh with T =2. The velocity
�eld reverses at t=T=2, and restores the con�guration back to its initial state at t=T . Dis-
played are the contours of 0.05, 0.5 and 0.95 of the numerical results at t=1 (top) and t=2
(middle). The bottom panel shows the di�erence between the numerical result (dashed line)

and the exact solution (solid-line circle).

expect any numerical scheme with a �nite resolution to be able to restore the exact initial
con�guration after an overly distorting transport. Figure 6 in Reference [12] displays the �nal
results of some interface tracking methods. Again, compared to those schemes, the C3 VOF
gives promising results. We should also note that compared to other schemes which use
PLIC or SLIC for interface reconstruction, the lost information during the C3 VOF advection
computation seems to be more easily recovered for this restoration �ow test. From the bottom
panels of Figures 10–12, we observe that the �nal interfaces of the deformed 2D cylinder
are reasonably well restored back to the exact solution even on a mesh of low resolution.
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Figure 11. Same as Figure 10, but on a 64× 64 mesh.

Table III. L1 errors and convergence rates of C3 VOF on the multi-vortex deformation problem.

32× 32 Order 64× 64 Order 128× 128
4:24× 10−2 0.96 2:03× 10−2 1.06 1:04× 10−2

This reveals to some extent that the C3 VOF can be e�ectively used as an interface capturing
scheme even in a low resolution simulation.
The L1 errors and the convergence rates for this test problem given in Table III also share

a �rst order accuracy.
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Figure 12. Same as Figure 10, but on a 128× 128 mesh.

We have applied the interface tracking method to the simulation of multi-�uid dynamics.
The C3 VOF was incorporated in a numerical code for incompressible �ow. In the �uid dy-
namic code, a fractional solution procedure similar to that in References [24] and [25] is
used. The advection is computed by the CIP scheme [26]. In the real hydrodynamic simu-
lations reported in this paper, the gravitational acceleration is g=9:8 m=s2. The densities for
air and liquid are speci�ed as �a = 1:1763 kg=m

3 and �l = 996:62 kg=m
3, respectively. The

viscosity coe�cients are �a = 18:62× 10−6 Pa s and �l = 854:4× 10−6 Pa s. The air/water in-
terface is identi�ed by the 0.5 contour of the VOF function f(x; y; t) computed by C3-VOF
scheme, and the density and the viscosity coe�cient over the whole computational domain are
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Figure 13. The VOF function of the density current generated by the release of a rectangular water dam.
Displayed are the contours of 0.05, 0.5 and 0.95. The interface is computed by the C3 VOF scheme

with sharpness enhancement (20).
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Figure 14. The VOF function of the density current generated by the release of a rectangular water
dam. Displayed are the contours of 0.05, 0.5 and 0.95. The interface is computed by the original CSL3

scheme without sharpness enhancement (i.e. �=1:0 in (20)).
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Figure 15. The displacement of the water front. Same as Reference [27], the normalized
distance is de�ned by Z = z=a with z being the real distance of the surge front and a the width
of the initial water column. The time is normalized as T =

√
2g=at, where t is the real time

and g the gravitational acceleration. Displayed are the simulation results of C3 VOF with �
de�ned by (20) and the original CIP-CSL3.

de�ned by

�(x; y; t)= �f(x; y; t)�l + [1− �f(x; y; t)]�a (24)

and

�(x; y; t)= �f(x; y; t)�l + [1− �f(x; y; t)]�a (25)

In order to validate the volume tracking method presented in this paper, we computed the
dam-breaking problem, which was experimentally studied by Martin and Moyce [27] a half
century ago and then widely used as a benchmark test for numerical models. A 80× 160 mesh,
with the grid spacing being uniformly 1mm, is used. The initial rectangular water column has
a width a=20mm and a height of 2a. Shown in Figure 13, the collapse of the water column
creates a complex interfacial �ow which is characterized by the breakup and coalescence of
liquid, entrained air bubbles and a heavily distorted interface. The C3 VOF method e�ectively
prevented the smearing of the interface and the thickness of the transition layer of the interface
was kept compact even after the interface had experienced topological changes. The air bubbles
trapped in the water during the latter stage (t=0:325s and t=0:4s) were simulated with well
de�ned interfaces. Recall that the numerical di�usion is suppressed in C3 VOF through a
modi�cation of the slope which is a free parameter for the interpolation function of the
CIP-CSL3 scheme. We repeated the simulation but without the slope modi�cation for the
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Figure 16. Simulation of the interaction between a falling drop and liquid.

sharpness reinforcement, i.e. the original CIP-CSL3 scheme was used. Figure 14 shows the
corresponding results. In this case, the interface was continuously spread out so that the
trapped bubbles were not adequately resolved. The bubble around the left-lower corner could
not be recognized. We validated the computational model by examining the displacement of
the water front along the lower surface. The scaled displacement is plotted in Figure 15.
The computational result of the C3 VOF agrees well with the experiment, while the original
CIP-CSL3 gave a less accurate front speed.
The 3D implementation of the C3 VOF is straightforward. The interfaces in our 3D com-

putations were also well resolved. Figure 16 shows the snapshots of the interaction between a
falling drop and a mass of liquid. The numerical model is similar to the 2D one used in the
previous test. The surface tension model is the CSF formulation proposed by Brackbill et al.
[28]. The surface tension coe�cient is �=71:69× 10−3. A 30× 30× 50 computational grid
was used. The drop was initially attached onto the top of a sealed tank. As can be expected,
it was torn under the force of gravity, and the major part fell downward to the liquid surface
while the remainder adhered to the ceiling due to capillary force. The impact of the falling
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drop caused a splashing of the liquid. The entire process was reasonably well simulated. The
total mass of both the drop and the liquid was conserved in this simulation.

5. CONCLUSIONS

An e�cient numerical method to track a free moving boundary is obtained by simply in-
corporating a slope modi�cation to the CIP CSL3 scheme. The resulting method, C3 VOF,
conserves the mass of the transported quantity, and is able to preserve the compact thickness
of the interface, without signi�cant numerical oscillation. Our numerical tests show that the
present method gives satisfactory results for even a heavily deforming velocity �eld. Without
surface reconstruction, the C3 VOF appears very computationally e�cient and the implemen-
tation in 3D is straightforward. By the preliminary application in multi-�uid computation, we
can expect the present method to be applicable to a wider spectrum of interfacial �ows in
real problems.
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